I’m pleased to announced a new package for producing SVGs from R: svglite. This package is a fork of Matthieu Decorde RSvgDevice and wouldn’t be possible without his hard work. I’d also like to thank David Gohel who wrote the gdtools package: it solves all the hardest problems associated with making good SVGs from R.

Today, most browsers have good support for SVG and it is a great way of displaying vector graphics on the web. Unfortunately, R’s built-in svg() device is focussed on high quality rendering, not size or speed. It renders text as individual polygons: this ensures a graphic will look exactly the same regardless of what fonts you have installed, but makes output considerably larger (and harder to edit in other tools). svglite produces hand-optimised SVG that is as small as possible.


svglite is a complete graphics device: that means you can give it any graphic and it will look the same as the equivalent .pdf or .png. Please file an issue if you discover a plot that doesn’t look right.


In an interactive session, you use it like any other R graphics device:

plot(runif(10), runif(10))

If you want to use it in knitr, just set your chunk options as follows:

```{r setup, include = FALSE}
  dev = "svglite",
  fig.ext = ".svg"

(Thanks to Bob Rudis for the tip)

There are also a few helper functions:

  • htmlSVG() makes it easy to preview the SVG in RStudio.
  • editSVG() opens the SVG file in your default SVG editor.
  • xmlSVG() returns the SVG as an xml2 object.

Are you ready to upgrade your R skills?  Register soon to secure your seat.

On January 28 and 29, 2016, Hadley Wickham will teach his popular Master R Developer Workshop at the Westin San Francisco Airport.  The workshop is offered only 3 times a year and the San Francisco class is already nearly 50% full. This is the only Master R Developer Workshop Hadley is planning for the US West Coast in 2016.

We look forward to seeing you there!

The RStudio IDE is bursting with capabilities and features. Do you know how to use them all? Tomorrow, we begin an “RStudio Essentials” webinar series. This will be the perfect way to learn how to use the IDE to its fullest.  The series is broken into six sections always on a Wednesday at 11 a.m. EDT:

Each webinar will be 30 minutes long, which will make them easy to attend. If you miss a live webinar or want to review them, recorded versions will be available to registrants. Register here.

p.s. Don’t forget that you can watch many useful past webinars at our webinars archive.

Update Nov 2 2015: Wow, that was fast. Registration is full. If you add yourself to the waitlist, we’ll contact you first if/when we do this conference again.

In the three years since we launched Shiny, our focus has been on helping people get started with Shiny. But there’s a huge difference between using Shiny and using it well, and we want to start getting serious about helping people use Shiny most effectively. It’s the difference between having apps that merely work, and apps that are performant, robust, and maintainable.

That’s why RStudio is thrilled to announce the first ever Shiny Developer Conference, to be held at Stanford University on January 30-31, 2016, three months from today. We’ll skip past the basics, and dig into principles and practices that will simultaneously simplify and improve the robustness of your code. We’ll introduce you to some brand new tools we’ve created to help you build ever larger and more complex apps. And we’ll show you what to do if things go wrong.

Check out the agenda to see the complete lineup of speakers and talks.

We’re capping the conference at just 90 people, so if you’d like to level up your Shiny skills, register now at http://shiny2016.eventbrite.com.

Hope to see you there!

Note that this conference is intended for R users who are already comfortable writing Shiny apps. We won’t cover the basics of Shiny app creation at all. If you’re looking to get started with Shiny, please see our tutorial.

roxygen2 5.0.0 is now available on CRAN. roxygen2 helps you document your packages by turning specially formatted inline comments in R’s standard Rd format. Learn more at http://r-pkgs.had.co.nz/man.html.

In this release:

  • Roxygen records its version in a single place: the RoxygenNote field in your DESCRIPTION. This should make it easier to see what’s changed when you upgrade roxygen2, because only files with differences will be modified. Previously every Rd file was modified to update the version number.
  • You can now easily document functions that you’ve imported from another package:
    #' @importFrom magrittr %>%
    #' @export

    All imported-and-re-exported functions will be documented in the same file (rexports.Rd), with a brief descrption and links to the original documentation.

  • You can more easily generate package documentation by documenting the special string “_PACKAGE“:
    #' @details Details

    The title and description will be automatically filled in from the DESCRIPTION.

  • New tags @rawRd and @rawNamespace allow you to insert raw (unescaped) text in Rd and the NAMESPACE. @evalRd() is similar, but instead of literal Rd, you give it R code that produces literal Rd code when run. This should make it easier to experiment with new types of output.
  • Roxygen2 now parses the source code files in the order specified in the Collate field in DESCRIPTION. This improves the ordering of the generated documentation when using @describeIn and/or @rdname split across several .R files, as often happens when working with S4.
  • The parser has been completely rewritten in C++. This gives a nice performance boost and adds improves the error messages: now get the line number of the tag, not the start of the block.
  • @family now cross-links each manual page only once, instread of linking to all aliases.

There were many other minor improvements and bug fixes; please see the release notes for a complete list. A bug thanks goes to all the contributors who made this release possible.

readr 0.2.0 is now available on CRAN. readr makes it easy to read many types of tabular data, including csv, tsv and fixed width. Compared to base equivalents like read.csv(), readr is much faster and gives more convenient output: it never converts strings to factors, can parse date/times, and it doesn’t munge the column names.

This is a big release, so below I describe the new features divided into four main categories:

  • Improved support for international data.
  • Column parsing improvements.
  • File parsing improvements, including support for comments.
  • Improved writers.

There were too many minor improvements and bug fixes to describe in detail here. See the release notes for a complete list.


readr now has a strategy for dealing with settings that vary across languages and localities: locales. A locale, created with locale(), includes:

  • The names of months and days, used when parsing dates.
  • The default time zone, used when parsing datetimes.
  • The character encoding, used when reading non-ASCII strings.
  • Default date format, used when guessing column types.
  • The decimal and grouping marks, used when reading numbers.

I’ll cover the most important of these parameters below. For more details, see vignette("locales").
To override the default US-centric locale, you pass a custom locale to read_csv(), read_tsv(), or read_fwf(). Rather than showing those funtions here, I’ll use the parse_*() functions because they work with character vectors instead of a files, but are otherwise identical.

Names of months and days

The first argument to locale() is date_names which controls what values are used for month and day names. The easiest way to specify them is with a ISO 639 language code:

locale("ko") # Korean
#> <locale>
#> Numbers:  123,456.78
#> Formats:  %Y%.%m%.%d / %H:%M
#> Timezone: UTC
#> Encoding: UTF-8
#> <date_names>
#> Days:   일요일 (일), 월요일 (월), 화요일 (화), 수요일 (수), 목요일 (목),
#>         금요일 (금), 토요일 (토)
#> Months: 1월, 2월, 3월, 4월, 5월, 6월, 7월, 8월, 9월, 10월, 11월, 12월
#> AM/PM:  오전/오후
locale("fr") # French
#> <locale>
#> Numbers:  123,456.78
#> Formats:  %Y%.%m%.%d / %H:%M
#> Timezone: UTC
#> Encoding: UTF-8
#> <date_names>
#> Days:   dimanche (dim.), lundi (lun.), mardi (mar.), mercredi (mer.),
#>         jeudi (jeu.), vendredi (ven.), samedi (sam.)
#> Months: janvier (janv.), février (févr.), mars (mars), avril (avr.), mai
#>         (mai), juin (juin), juillet (juil.), août (août),
#>         septembre (sept.), octobre (oct.), novembre (nov.),
#>         décembre (déc.)
#> AM/PM:  AM/PM

This allows you to parse dates in other languages:

parse_date("1 janvier 2015", "%d %B %Y", locale = locale("fr"))
#> [1] "2015-01-01"
parse_date("14 oct. 1979", "%d %b %Y", locale = locale("fr"))
#> [1] "1979-10-14"


readr assumes that times are in Coordinated Universal Time, aka UTC. UTC is the best timezone for data because it doesn’t have daylight savings. If your data isn’t already in UTC, you’ll need to supply a tz in the locale:

parse_datetime("2001-10-10 20:10")
#> [1] "2001-10-10 20:10:00 UTC"
parse_datetime("2001-10-10 20:10", 
  locale = locale(tz = "Pacific/Auckland"))
#> [1] "2001-10-10 20:10:00 NZDT"
parse_datetime("2001-10-10 20:10", 
  locale = locale(tz = "Europe/Dublin"))
#> [1] "2001-10-10 20:10:00 IST"

List all available times zones with OlsonNames(). If you’re American, note that “EST” is not Eastern Standard Time – it’s a Canadian time zone that doesn’t have DST! Instead of relying on ambiguous abbreivations, use:

  • PST/PDT = “US/Pacific”
  • CST/CDT = “US/Central”
  • MST/MDT = “US/Mountain”
  • EST/EDT = “US/Eastern”

Default formats

Locales also provide default date and time formats. The time format isn’t currently used for anything, but the date format is used when guessing column types. The default date format is %Y-%m-%d because that’s unambiguous:

#>  Date[1:1], format: "2010-10-10"

If you’re an American, you might want you use your illogical date sytem::

#>  chr "01/02/2013"
  locale = locale(date_format = "%d/%m/%Y")))
#>  Date[1:1], format: "2013-02-01"

Character encoding

All readr functions yield strings encoded in UTF-8. This encoding is the most likely to give good results in the widest variety of settings. By default, readr assumes that your input is also in UTF-8, which is less likely to be the case, especially when you’re working with older datasets. To parse a dataset that’s not in UTF-8, you need to a supply an encoding.
The following code creates a string encoded with latin1 (aka ISO-8859-1), and shows how it’s different from the string encoded as UTF-8, and how to parse it with readr:

x <- "Émigré cause célèbre déjà vu.\n"
y <- stringi::stri_conv(x, "UTF-8", "Latin1")

# These strings look like they're identical:
#> [1] "Émigré cause célèbre déjà vu.\n"
#> [1] "Émigré cause célèbre déjà vu.\n"
identical(x, y)
#> [1] TRUE

# But they have different encodings:
#> [1] "UTF-8"
#> [1] "latin1"

# That means while they print the same, their raw (binary)
# representation is actually rather different:
#>  [1] c3 89 6d 69 67 72 c3 a9 20 63 61 75 73 65 20 63 c3 a9 6c c3 a8 62 72
#> [24] 65 20 64 c3 a9 6a c3 a0 20 76 75 2e 0a
#>  [1] c9 6d 69 67 72 e9 20 63 61 75 73 65 20 63 e9 6c e8 62 72 65 20 64 e9
#> [24] 6a e0 20 76 75 2e 0a

# readr expects strings to be encoded as UTF-8. If they're
# not, you'll get weird characters
#> [1] "Émigré cause célèbre déjà vu.\n"
#> [1] "\xc9migr\xe9 cause c\xe9l\xe8bre d\xe9j\xe0 vu.\n"

# If you know the encoding, supply it:
parse_character(y, locale = locale(encoding = "latin1"))
#> [1] "Émigré cause célèbre déjà vu.\n"

If you don’t know what encoding the file uses, try guess_encoding(). It’s not 100% perfect (as it’s fundamentally a heuristic), but should at least get you pointed in the right direction:

#>     encoding confidence
#> 1 ISO-8859-2        0.4
#> 2 ISO-8859-1        0.3

# Note that the first guess produces a valid string, 
# but isn't correct:
parse_character(y, locale = locale(encoding = "ISO-8859-2"))
#> [1] "Émigré cause célčbre déjŕ vu.\n"
# But ISO-8859-1 is another name for latin1
parse_character(y, locale = locale(encoding = "ISO-8859-1"))
#> [1] "Émigré cause célèbre déjà vu.\n"


Some countries use the decimal point, while others use the decimal comma. The decimal_mark option controls which readr uses when parsing doubles:

parse_double("1,23", locale = locale(decimal_mark = ","))
#> [1] 1.23

The big_mark option describes which character is used to space groups of digits. Do you write 1,000,000, 1.000.000, 1 000 000, or 1'000'000? Specifying the grouping mark allows parse_number() to parse large number as they’re commonly written:

#> [1] 1234.56

# dplyr is smart enough to guess that if you're using , for 
# decimals then you're probably using . for grouping:
parse_number("1.234,56", locale = locale(decimal_mark = ","))
#> [1] 1234.56

Column parsing improvements

One of the most useful parts of readr are the column parsers: the tools that turns character input into usefully typed data frame columns. This process is now described more fully in a new vignette: vignette("column-types").
By default, column types are guessed by looking at the data. I’ve made a number of tweaks to make it more likely that your code will load correctly the first time:

  • readr now looks at the first 1000 rows (instead of just the first 100) when guessing column types: this only takes a fraction more time, but should hopefully yield better guesses for more inputs.

  • col_date() and col_datetime() no longer recognise partial dates like 19, 1900, 1900-01. These triggered many false positives and after re-reading the ISO8601 spec, I believe they actually refer to periods of time, so should not be parsed into a specific instant.

  • col_integer() no longer recognises values started with zeros (e.g. 0001) as these are often used as identifiers.

  • col_number() will automatically recognise numbers containing the grouping mark (see below for more details).

But you can override these defaults with the col_types() argument. In this version, col_types gains some much needed flexibility:

  • New cols() function takes of assembling the list of column types, and with its .default argument, allows you to control the default column type:
    read_csv("x,y\n1,2", col_types = cols(.default = "c"))
    #> Source: local data frame [1 x 2]
    #>       x     y
    #>   (chr) (chr)
    #> 1     1     2

    You can refer to parsers with their full name (e.g. col_character()) or their one letter abbreviation (e.g. c). The default value of .default is “?”: guess the type of column from the data.

  • cols_only() allows you to load only the specified columns:

    read_csv("a,b,c\n1,2,3", col_types = cols_only("b" = "?"))
    #> Source: local data frame [1 x 1]
    #>       b
    #>   (int)
    #> 1     2

Many of the individual parsers have also been improved:

  • col_integer() and col_double() no longer silently ignore trailing characters after the number.

  • New col_number()/parse_number() replace the old col_numeric()/ parse_numeric(). This parser is less flexible, so it’s less likely to silently ignored bad input. It’s designed specifically to read currencies and percentages. It only reads the first number from a string, ignoring the grouping mark defined by the locale:

    #> [1] 1234566
    #> [1] 1234
    #> [1] 27
  • New parse_time() and col_time() allow you to parse times. They have an optional format argument, that uses the same components as parse_datetime(). If format is omitted, they use a flexible parser that looks for hours, then an optional colon, then minutes, then an optional colon, then optional seconds, then optional am/pm.
    parse_time(c("1:45 PM", "1345", "13:45:00"))
    #> [1] 13:45:00 13:45:00 13:45:00

    parse_time() returns the number of seconds since midnight as an integer with class “time”. readr includes a basic print method.

  • parse_date()/col_date() and parse_datetime()/col_datetime() gain two new format strings: “%+” skips one or more non-digits, and %p reads in AM/PM (and am/pm).

File parsing improvements

read_csv(), read_tsv(), and read_delim() gain extra arguments that allow you to parse more files:

  • Multiple NA values can be specified by passing a character vector to na. The default has been changed to na = c("", "NA").
    read_csv("a,b\n.,NA\n1,3", na = c(".", "NA"))
    #> Source: local data frame [2 x 2]
    #>       a     b
    #>   (int) (int)
    #> 1    NA    NA
    #> 2     1     3
  • New comment argument allows you to ignore all text after a string:
    "#This is a comment
    #This is another comment
    2,20", comment = "#")
    #> Source: local data frame [2 x 2]
    #>       a     b
    #>   (int) (int)
    #> 1     1    10
    #> 2     2    20
  • trim_ws argument controls whether leading and trailing whitespace is removed. It defaults to TRUE.
    read_csv("a,b\n     1,     2")
    #> Source: local data frame [1 x 2]
    #>       a     b
    #>   (int) (int)
    #> 1     1     2
    read_csv("a,b\n     1,     2", trim_ws = FALSE)
    #> Source: local data frame [1 x 2]
    #>        a      b
    #>    (chr)  (chr)
    #> 1      1      2

Specifying the wrong number of column names, or having rows with an unexpected number of columns, now gives a warning, rather than an error:

#> Warning: 2 parsing failures.
#> row col  expected    actual
#>   1  -- 3 columns 2 columns
#>   2  -- 3 columns 4 columns
#> Source: local data frame [2 x 3]
#>       a     b     c
#>   (int) (int) (int)
#> 1     1     2    NA
#> 2     1     2     3

Note that the warning message now also shows you the first five problems. I hope this will often allow you to iterate immediately, rather than having to look at the full problems().


Despite the name, readr also provides some tools for writing data frames to disk. In this version there are three output functions:

  • write_csv() and write_tsv() write tab and comma delimted files, and write_delim() writes with user specified delimiter.

  • write_rds() and read_rds() wrap around readRDS() and saveRDS(), defaulting to no compression, because you’re usually more interested in saving time (expensive) than disk space (cheap).

All these functions invisibly return their output so you can use them as part of a pipeline:

my_df %>%
  some_manipulation() %>%
  write_csv("interim-a.csv") %>%
  some_more_manipulation() %>%
  write_csv("interim-b.csv") %>%
  even_more_manipulation() %>%

You can now control how missing values are written with the na argument, and the quoting algorithm has been further refined to only add quotes when needed: when the string contains a quote, the delimiter, a new line or the same text as missing value.
Output for doubles now uses the same precision as R, and POSIXt vectors are saved in a ISO8601 compatible format.
For testing, you can use format_csv(), format_tsv(), and format_delim() to write csv to a string:

mtcars %>%
  head(4) %>%
  format_csv() %>%
#> mpg,cyl,disp,hp,drat,wt,qsec,vs,am,gear,carb
#> 21,6,160,110,3.9,2.62,16.46,0,1,4,4
#> 21,6,160,110,3.9,2.875,17.02,0,1,4,4
#> 22.8,4,108,93,3.85,2.32,18.61,1,1,4,1
#> 21.4,6,258,110,3.08,3.215,19.44,1,0,3,1

This is particularly useful for generating reprexes.

testthat 0.11.0 is now available on CRAN. Testthat makes it easy to turn your existing informal tests into formal automated tests that you can rerun quickly and easily. Learn more at http://r-pkgs.had.co.nz/tests.html. Install the latest version with:


In this version:

  • New expect_silent() ensures that code produces no output, messages, or warnings. expect_output(), expect_message(), expect_warning(), and expect_error() now accept NA as the second argument to indicate that there shouldn’t be any output, messages, warnings, or errors (i.e. they should be missing)
    f <- function() {
    #> Error: f() produced output, warnings, messages
    expect_warning(log(-1), NA)
    #> Error: log(-1) expected no warnings:
    #> *  NaNs produced
  • Praise gets more diverse thanks to Gabor Csardi’s praise package, and you now also get random encouragment if your tests don’t pass.
  • testthat no longer muffles warning messages. This was a bug in the previous version, as warning messages are usually important and should be dealt with explicitly, either by resolving the problem or explicitly capturing them with expect_warning().
  • Two new skip functions make it easier to skip tests that don’t work in certain environments: skip_on_os() skips tests on the specified operating system, and skip_on_appveyor() skips tests on Appveyor.

There were a number of other minor improvements and bug fixes. See the release notes for a complete list.

A big thanks goes out to all the contributors who made this release happen. There’s no way I could be as productive without the fantastic commmunity of R developers who come up with thoughtful new features, and who discover and fix my bugs!

Purrr is a new package that fills in the missing pieces in R’s functional programming tools: it’s designed to make your pure functions purrr. Like many of my recent packages, it works with magrittr to allow you to express complex operations by combining simple pieces in a standard way.

Install it with:


Purrr wouldn’t be possible without Lionel Henry. He wrote a lot of the package and his insightful comments helped me rapidly iterate towards a stable, useful, and understandable package.

Map functions

The core of purrr is a set of functions for manipulating vectors (atomic vectors, lists, and data frames). The goal is similar to dplyr: help you tackle the most common 90% of data manipulation challenges. But where dplyr focusses on data frames, purrr focusses on vectors. For example, the following code splits the built-in mtcars dataset up by number of cylinders (using the base split() function), fits a linear model to each piece, summarises each model, then extracts the the \(R^2\):

mtcars %>%
  split(.$cyl) %>%
  map(~lm(mpg ~ wt, data = .)) %>%
  map(summary) %>%
#>     4     6     8 
#> 0.509 0.465 0.423

The first argument to all map functions is the vector to operate on. The second argument, .f specifies what to do with each piece. It can be:

  • A function, like summary().
  • A formula, which is converted to an anonymous function, so that ~ lm(mpg ~ wt, data = .) is shorthand for function(x) lm(mpg ~ wt, data = x).
  • A string or number, which is used to extract components, i.e. "r.squared" is shorthand for function(x) x[[r.squared]] and 1 is shorthand for function(x) x[[1]].

Map functions come in a few different variations based on their inputs and output:

  • map() takes a vector (list or atomic vector) and returns a list. map_lgl(), map_int(), map_dbl(), and map_chr() take a vector and return an atomic vector. flatmap() works similarly, but allows the function to return arbitrary length vectors.
  • map_if() only applies .f to those elements of the list where .p is true. For example, the following snippet converts factors into characters:
    iris %>% map_if(is.factor, as.character) %>% str()
    #> 'data.frame':    150 obs. of  5 variables:
    #>  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
    #>  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
    #>  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
    #>  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
    #>  $ Species     : chr  "setosa" "setosa" "setosa" "setosa" ...

    map_at() works similarly but instead of working with a logical vector or predicate function, it works with a integer vector of element positions.

  • map2() takes a pair of lists and iterates through them in parallel:
    map2(1:3, 2:4, c)
    #> [[1]]
    #> [1] 1 2
    #> [[2]]
    #> [1] 2 3
    #> [[3]]
    #> [1] 3 4
    map2(1:3, 2:4, ~ .x * (.y - 1))
    #> [[1]]
    #> [1] 1
    #> [[2]]
    #> [1] 4
    #> [[3]]
    #> [1] 9

    map3() does the same thing for three lists, and map_n() does it in general.

  • invoke(), invoke_lgl(), invoke_int(), invoke_dbl(), and invoke_chr() take a list of functions, and call each one with the supplied arguments:
    list(m1 = mean, m2 = median) %>%
    #>    m1    m2 
    #> 9.765 0.117
  • walk() takes a vector, calls a function on piece, and returns its original input. It’s useful for functions called for their side-effects; it returns the input so you can use it in a pipe.

Purrr and dplyr

I’m becoming increasingly enamoured with the list-columns in data frames. The following example combines purrr and dplyr to generate 100 random test-training splits in order to compute an unbiased estimate of prediction quality. These tools are still experimental (and currently need quite a bit of extra scaffolding), but I think the basic approach is really appealing.

random_group <- function(n, probs) {
  probs <- probs / sum(probs)
  g <- findInterval(seq(0, 1, length = n), c(0, cumsum(probs)),
    rightmost.closed = TRUE)
partition <- function(df, n, probs) {
  n %>% 
    replicate(split(df, random_group(nrow(df), probs)), FALSE) %>%
    zip_n() %>%

msd <- function(x, y) sqrt(mean((x - y) ^ 2))

# Genearte 100 random test-training splits, 
cv <- mtcars %>%
  partition(100, c(training = 0.8, test = 0.2)) %>% 
    # Fit the model
    model = map(training, ~ lm(mpg ~ wt, data = .)),
    # Make predictions on test data
    pred = map2(model, test, predict),
    # Calculate mean squared difference
    diff = map2(pred, test %>% map("mpg"), msd) %>% flatten()
#> Source: local data frame [100 x 5]
#>                   test             training   model     pred  diff
#>                 (list)               (list)  (list)   (list) (dbl)
#> 1  <data.frame [7,11]> <data.frame [25,11]> <S3:lm> <dbl[7]>  3.70
#> 2  <data.frame [7,11]> <data.frame [25,11]> <S3:lm> <dbl[7]>  2.03
#> 3  <data.frame [7,11]> <data.frame [25,11]> <S3:lm> <dbl[7]>  2.29
#> 4  <data.frame [7,11]> <data.frame [25,11]> <S3:lm> <dbl[7]>  4.88
#> 5  <data.frame [7,11]> <data.frame [25,11]> <S3:lm> <dbl[7]>  3.20
#> 6  <data.frame [7,11]> <data.frame [25,11]> <S3:lm> <dbl[7]>  4.68
#> 7  <data.frame [7,11]> <data.frame [25,11]> <S3:lm> <dbl[7]>  3.39
#> 8  <data.frame [7,11]> <data.frame [25,11]> <S3:lm> <dbl[7]>  3.82
#> 9  <data.frame [7,11]> <data.frame [25,11]> <S3:lm> <dbl[7]>  2.56
#> 10 <data.frame [7,11]> <data.frame [25,11]> <S3:lm> <dbl[7]>  3.40
#> ..                 ...                  ...     ...      ...   ...
#> [1] 3.22

Other functions

There are too many other pieces of purrr to describe in detail here. A few of the most useful functions are noted below:

  • zip_n() allows you to turn a list of lists “inside-out”:
    x <- list(list(a = 1, b = 2), list(a = 2, b = 1))
    x %>% str()
    #> List of 2
    #>  $ :List of 2
    #>   ..$ a: num 1
    #>   ..$ b: num 2
    #>  $ :List of 2
    #>   ..$ a: num 2
    #>   ..$ b: num 1
    x %>%
      zip_n() %>%
    #> List of 2
    #>  $ a:List of 2
    #>   ..$ : num 1
    #>   ..$ : num 2
    #>  $ b:List of 2
    #>   ..$ : num 2
    #>   ..$ : num 1
    x %>%
      zip_n(.simplify = TRUE) %>%
    #> List of 2
    #>  $ a: num [1:2] 1 2
    #>  $ b: num [1:2] 2 1
  • keep() and discard() allow you to filter a vector based on a predicate function. compact() is a helpful wrapper that throws away empty elements of a list.
    1:10 %>% keep(~. %% 2 == 0)
    #> [1]  2  4  6  8 10
    1:10 %>% discard(~. %% 2 == 0)
    #> [1] 1 3 5 7 9
    list(list(x = TRUE, y = 10), list(x = FALSE, y = 20)) %>%
      keep("x") %>% 
    #> List of 1
    #>  $ :List of 2
    #>   ..$ x: logi TRUE
    #>   ..$ y: num 10
    list(NULL, 1:3, NULL, 7) %>% 
      compact() %>%
    #> List of 2
    #>  $ : int [1:3] 1 2 3
    #>  $ : num 7
  • lift() (and friends) allow you to convert a function that takes multiple arguments into a function that takes a list. It helps you compose functions by lifting their domain from a kind of input to another kind. The domain can be changed to and from a list (l), a vector (v) and dots (d).
  • cross2(), cross3() and cross_n() allow you to create the Cartesian product of the inputs (with optional filtering).
  • A number of functions let you manipulate functions: negate(), compose(), partial().
  • A complete set of predicate functions provides predictable versions of the is.* functions: is_logical(), is_list(), is_bare_double(), is_scalar_character(), etc.
  • Other equivalents functions wrap existing base R functions into to the consistent design of purrr: replicate() -> rerun(), Reduce() -> reduce(), Find() -> detect(), Position() -> detect_index().

Design philosophy

The goal of purrr is not try and turn R into Haskell in R: it does not implement currying, or destructuring binds, or pattern matching. The goal is to give you similar expressiveness to a classical FP language, while allowing you to write code that looks and feels like R.

  • Anonymous functions are verbose in R, so we provide two convenient shorthands. For predicate functions, ~ .x + 1 is equivalent to function(.x) .x + 1. For chains of transformations functions, . %>% f() %>% g() is equivalent to function(.) . %>% f() %>% g().
  • R is weakly typed, so we can implement general zip_n(), rather than having to specialise on the number of arguments. That said, we still provide map2() and map3() since it’s useful to clearly separate which arguments are vectorised over. Functions are designed to be output type-stable (respecting Postel’s law) so you can rely on the output being as you expect.
  • R has named arguments, so instead of providing different functions for minor variations (e.g. detect() and detectLast()) we use a named arguments.
  • Instead of currying, we use ... to pass in extra arguments. Arguments of purrr functions always start with . to avoid matching to the arguments of .f passed in via ....
  • Instead of point free style, use the pipe, %>%, to write code that can be read from left to right.

I’m pleased to announce rvest 0.3.0 is now available on CRAN. Rvest makes it easy to scrape (or harvest) data from html web pages, inspired by libraries like beautiful soup. It is designed to work with pipes so that you can express complex operations by composed simple pieces. Install it with:


What’s new

The biggest change in this version is that rvest now uses the xml2 package instead of XML. This makes rvest much simpler, eliminates memory leaks, and should improve performance a little.

A number of functions have changed names to improve consistency with other packages: most importantly html() is now read_html(), and html_tag() is now html_name(). The old versions still work, but are deprecated and will be removed in rvest 0.4.0.

html_node() now throws an error if there are no matches, and a warning if there’s more than one match. I think this should make it more likely to fail clearly when the structure of the page changes. If you don’t want this behaviour, use html_nodes().

There were a number of other bug fixes and minor improvements as described in the release notes.

RStudio will again teach the new essentials for doing (big) data science in R at this year’s Strata NYC conference, September 29 2015 (http://strataconf.com/big-data-conference-ny-2015/public/schedule/detail/44154).  You will learn from Garrett Grolemund, Yihui Xie, and Nathan Stephens who are all working on fascinating new ways to keep the R ecosystem apace of the challenges facing those who work with data.

Topics include:

  • R Quickstart: Wrangle, transform, and visualize data
    Instructor: Garrett Grolemund (90 minutes)
  • Work with Big Data in R
    Instructor: Nathan Stephens (90 minutes)
  • Reproducible Reports with Big Data
    Instructor: Yihui Xie (90 minutes)
  • Interactive Shiny Applications built on Big Data
    Instructor: Garrett Grolemund (90 minutes)

If you plan to stay for the full Strata Conference+Hadoop World be sure to look us up at booth 633 during the Expo Hall hours. We’ll have the latest books from RStudio authors and “shiny” t-shirts to win. Share with us what you’re doing with RStudio and get your product and company questions answered by RStudio employees.

See you in New York City! (http://strataconf.com/big-data-conference-ny-2015)


Get every new post delivered to your Inbox.

Join 19,400 other followers