I’m pleased to announce tidyr 0.6.0. tidyr makes it easy to “tidy” your data, storing it in a consistent form so that it’s easy to manipulate, visualise and model. Tidy data has a simple convention: put variables in the columns and observations in the rows. You can learn more about it in the tidy data vignette. Install it with:

install.packages("tidyr")

I mostly released this version to bundle up a number of small tweaks needed for R for Data Science. But there’s one nice new feature, contributed by Jan Schulzdrop_na()drop_na()drops rows containing missing values:

df <- tibble(x = c(1, 2, NA), y = c("a", NA, "b"))
df
#> # A tibble: 3 × 2
#>       x     y
#>   <dbl> <chr>
#> 1     1     a
#> 2     2  <NA>
#> 3    NA     b

# Called without arguments, it drops rows containing
# missing values in any variable:
df %>% drop_na()
#> # A tibble: 1 × 2
#>       x     y
#>   <dbl> <chr>
#> 1     1     a

# Or you can restrict the variables it looks at, 
# using select() style syntax:
df %>% drop_na(x)
#> # A tibble: 2 × 2
#>       x     y
#>   <dbl> <chr>
#> 1     1     a
#> 2     2  <NA>

Please see the release notes for a complete list of changes.