This release includes a range of bug fixes and minor improvements. Some highlights from this release include:

  • period() and duration() constructors now accept character strings and allow a very flexible specification of timespans:
    period("3H 2M 1S")
    #> [1] "3H 2M 1S"
    duration("3 hours, 2 mins, 1 secs")
    #> [1] "10921s (~3.03 hours)"
    # Missing numerals default to 1. 
    # Repeated units are summed
    period("hour minute minute")
    #> [1] "1H 2M 0S"

    Period and duration parsing allows for arbitrary abbreviations of time units as long as the specification is unambiguous. For single letter specs, strptime() rules are followed, so m stands for months and M for minutes.

    These same rules allows you to compare strings and durations/periods:

    "2mins 1 sec" > period("2mins")
    #> [1] TRUE
  • Date time rounding (with round_date()floor_date() and ceiling_date()) now supports unit multipliers, like “3 days” or “2 months”:
    ceiling_date(ymd_hms("2016-09-12 17:10:00"), unit = "5 minutes")
    #> [1] "2016-09-12 17:10:00 UTC"
  • The behavior of ceiling_date for Date objects is now more intuitive. In short, dates are now interpreted as time intervals that are physically part of longer unit intervals:
    |day1| ... |day31|day1| ... |day28| ...
    |    January     |   February     | ...

    That means that rounding up 2000-01-01 by a month is done to the boundary between January and February which, i.e. 2000-02-01:

    ceiling_date(ymd("2000-01-01"), unit = "month")
    #> [1] "2000-02-01"

    This behavior is controlled by the change_on_boundary argument.

  • It is now possible to compare POSIXct and Date objects:
    ymd_hms("2000-01-01 00:00:01") > ymd("2000-01-01")
    #> [1] TRUE
  • C-level parsing now handles English months and AM/PM indicator regardless of your locale. This means that English date-times are now always handled by lubridate C-level parsing and you don’t need to explicitly switch the locale.
  • New parsing function yq() allows you to parse a year + quarter:
    #> [1] "2016-04-01"

    The new q format is available in all lubridate parsing functions.

See the release notes for the full list of changes. A big thanks goes to everyone who contributed: @arneschillert, @cderv, @ijlyttle, @jasonelaw, @jonboiser, and @krlmlr.

A new Shiny release is upon us! There are many new exciting features, bug fixes, and library updates. We’ll just highlight the most important changes here, but you can browse through the full changelog for details. This will likely be the last release before shiny 1.0, so get out your party hats!

To install it, you can just run:


Bookmarkable state

Shiny now supports bookmarkable state: users can save the state of an application and get a URL which will restore the application with that state. There are two types of bookmarking: encoding the state in a URL, and saving the state to the server. With an encoded state, the entire state of the application is contained in the URL’s query string. You can see this in action with this app: An example of a bookmark URL for this app is When the state is saved to the server, the URL might look something like: (note that this URL is not for an active app).

Important note: Saved-to-server bookmarking currently works with Shiny Server Open Source. Support on Shiny Server Pro, RStudio Connect, and is under development and testing. However, URL-encoded bookmarking works on all hosting platforms.

See this article to get started with bookmarkable state. There is also an advanced-level article, and a modules article that details how to use bookmarking in conjunction with modules.


Shiny can now display notifications on the client browser by using the showNotification() function. Use this demo app to play around with the notification API. For more, see our article about notifications.

Progress indicators

If your Shiny app contains computations that take a long time to complete, a progress bar can improve the user experience by communicating how far along the computation is, and how much is left. Progress bars were added in Shiny 0.10.2. In Shiny 0.14, we’ve changed them to use the notifications system, which gives them a different look.

Important note: If you were already using progress bars and had customized them with your own CSS, you can add the style = "old" argument to your withProgress() call (or Progress$new()). This will result in the same appearance as before. You can also call shinyOptions( = "old") in your app’s server function to make all progress indicators use the old styling.

To see new progress bars in action, see this app in the gallery. You can also learn more about them in here.

Modal windows

Shiny has now built-in support for displaying modal dialogs like the one below (live app here):

Modal dialog

To learn more about modal dialogs in Shiny, read the article about them.

insertUI and removeUI

Sometimes in a Shiny app, arbitrary HTML UI may need to be created on-the-fly in response to user input. The existing uiOutput and renderUI functions let you continue using reactive logic to call UI functions and make the results appear in a predetermined place in the UI. The insertUI and removeUI functions, which are used in the server code, allow you to use imperative logic to add and remove arbitrary chunks of HTML (all independent from one another), as many times as you want, whenever you want, wherever you want. This option may be more convenient when you want to, for example, add a new model to your app each time the user selects a different option (and leave previous models unchanged, rather than substitute the previous one for the latest one).

See this simple demo app of how one could use insertUI and removeUI to insert and remove text elements using a queue. Also see this other app that demonstrates how to insert and remove a few common Shiny input objects. Finally, this app shows how to dynamically insert modules using insertUI.

For more, read our article about dynamic UI generation and the reference documentation about insertUI and removeUI.

Documentation for connecting to an external database

Many Shiny users have asked about best practices for accessing external databases from their Shiny applications. Although database access has long been possible using various database connector packages in R, it can be challenging to use them robustly in the dynamic environment that Shiny provides. So far, it has been mostly up to application authors to find the appropriate database drivers and to discover how to manage the database connections within an application. In order to demystify this process, we wrote a series of articles (first one here) that covers the basics of connecting to an external database, as well as some security precautions to keep in mind (e.g. how to avoid SQL injection attacks).

There are a few packages that you should look at if you’re using a relational database in a Shiny app: the dplyr and DBI packages (both featured in the article linked to above), and the brand new pool package, which provides a further layer of abstraction to make it easier and safer to use either DBI or dplyr. pool is not yet on CRAN. In particular, pool will take care of managing connections, preventing memory leaks, and ensuring the best performance. See this pool basics article and the more advanced-level article if you’re feeling adventurous! (Both of these articles contain Shiny app examples that use DBI to connect to an external MySQL database.) If you are more comfortable with dplyr than DBI, don’t miss the article about the integration of pool and dplyr.

If you’re new to databases in the Shiny world, we recommend using dplyr and pool if possible. If you need greater control than dplyr offers (for example, if you need to modify data in the database or use transactions), then use DBI and pool. The pool package was introduced to make your life easier, but in no way constrains you, so we don’t envision any situation in which you’d be better off not using it. The only caveat is that pool is not yet on CRAN, so you may prefer to wait for that.


There are many more minor features, small improvements, and bug fixes than we can cover here, so we’ll just mention a few of the more noteworthy ones. (For more, you can see the full changelog.).

  • Error Sanitization: you now have the option to sanitize error messages; in other words, the content of the original error message can be suppressed so that it doesn’t leak any sensitive information. To sanitize errors everywhere in your app, just add options(shiny.sanitize.errors = TRUE) somewhere in your app. Read this article for more, or play with the demo app.
  • Code Diagnostics: if there is an error parsing ui.R, server.R, app.R, or global.R, Shiny will search the code for missing commas, extra commas, and unmatched braces, parens, and brackets, and will print out messages pointing out those problems. (#1126)
  • Reactlog visualization: by default, the showReactLog() function (which brings up the reactive graph) also displays the time that each reactive and observer were active for:


    Additionally, to organize the graph, you can now drag any of the nodes to a specific position and leave it there.

  • Nicer-looking tables: we’ve made tables generated with renderTable() look cleaner and more modern. While this won’t break any older code, the finished look of your table will be quite a bit different, as the following image shows:


    For more, read our short article about this update, experiment with all the new features in this demo app, or check out the reference documentation.

If you use packages from the tidyverse (like tibble and readr) you don’t need to worry about getting factors when you don’t want them. But factors are a useful data structure in their own right, particularly for modelling and visualisation, because they allow you to control the order of the levels. Working with factors in base R can be a little frustrating because of a handful of missing tools. The goal of forcats is to fill in those missing pieces so you can access the power of factors with a minimum of pain.

Install forcats with:


forcats provides two main types of tools to change either the values or the order of the levels. I’ll call out some of the most important functions below, using using the included gss_cat dataset which contains a selection of categorical variables from the General Social Survey.


#> # A tibble: 21,483 × 9
#>    year       marital   age   race        rincome            partyid
#>   <int>        <fctr> <int> <fctr>         <fctr>             <fctr>
#> 1  2000 Never married    26  White  $8000 to 9999       Ind,near rep
#> 2  2000      Divorced    48  White  $8000 to 9999 Not str republican
#> 3  2000       Widowed    67  White Not applicable        Independent
#> 4  2000 Never married    39  White Not applicable       Ind,near rep
#> 5  2000      Divorced    25  White Not applicable   Not str democrat
#> 6  2000       Married    25  White $20000 - 24999    Strong democrat
#> # ... with 2.148e+04 more rows, and 3 more variables: relig <fctr>,
#> #   denom <fctr>, tvhours <int>

Change level values

You can recode specified factor levels with fct_recode():

gss_cat %>% count(partyid)
#> # A tibble: 10 × 2
#>              partyid     n
#>               <fctr> <int>
#> 1          No answer   154
#> 2         Don't know     1
#> 3        Other party   393
#> 4  Strong republican  2314
#> 5 Not str republican  3032
#> 6       Ind,near rep  1791
#> # ... with 4 more rows

gss_cat %>%
  mutate(partyid = fct_recode(partyid,
    "Republican, strong"    = "Strong republican",
    "Republican, weak"      = "Not str republican",
    "Independent, near rep" = "Ind,near rep",
    "Independent, near dem" = "Ind,near dem",
    "Democrat, weak"        = "Not str democrat",
    "Democrat, strong"      = "Strong democrat"
  )) %>%
#> # A tibble: 10 × 2
#>                 partyid     n
#>                  <fctr> <int>
#> 1             No answer   154
#> 2            Don't know     1
#> 3           Other party   393
#> 4    Republican, strong  2314
#> 5      Republican, weak  3032
#> 6 Independent, near rep  1791
#> # ... with 4 more rows

Note that unmentioned levels are left as is, and the order of the levels is preserved.

fct_lump() allows you to lump the rarest (or most common) levels in to a new “other” level. The default behaviour is to collapse the smallest levels in to other, ensuring that it’s still the smallest level. For the religion variable that tells us that Protestants out number all other religions, which is interesting, but we probably want more level.

gss_cat %>% 
  mutate(relig = fct_lump(relig)) %>% 
#> # A tibble: 2 × 2
#>        relig     n
#>       <fctr> <int>
#> 1      Other 10637
#> 2 Protestant 10846

Alternatively you can supply a number of levels to keep, n, or minimum proportion for inclusion, prop. If you use negative values, fct_lump()will change direction, and combine the most common values while preserving the rarest.

gss_cat %>% 
  mutate(relig = fct_lump(relig, n = 5)) %>% 
#> # A tibble: 6 × 2
#>        relig     n
#>       <fctr> <int>
#> 1      Other   913
#> 2  Christian   689
#> 3       None  3523
#> 4     Jewish   388
#> 5   Catholic  5124
#> 6 Protestant 10846

gss_cat %>% 
  mutate(relig = fct_lump(relig, prop = -0.10)) %>% 
#> # A tibble: 12 × 2
#>                     relig     n
#>                    <fctr> <int>
#> 1               No answer    93
#> 2              Don't know    15
#> 3 Inter-nondenominational   109
#> 4         Native american    23
#> 5               Christian   689
#> 6      Orthodox-christian    95
#> # ... with 6 more rows

Change level order

There are four simple helpers for common operations:

  • fct_relevel() is similar to stats::relevel() but allows you to move any number of levels to the front.
  • fct_inorder() orders according to the first appearance of each level.
  • fct_infreq() orders from most common to rarest.
  • fct_rev() reverses the order of levels.

fct_reorder() and fct_reorder2() are useful for visualisations. fct_reorder() reorders the factor levels by another variable. This is useful when you map a categorical variable to position, as shown in the following example which shows the average number of hours spent watching television across religions.

relig <- gss_cat %>%
  group_by(relig) %>%
    age = mean(age, na.rm = TRUE),
    tvhours = mean(tvhours, na.rm = TRUE),
    n = n()

ggplot(relig, aes(tvhours, relig)) + geom_point()
reorder-1ggplot(relig, aes(tvhours, fct_reorder(relig, tvhours))) +


fct_reorder2() extends the same idea to plots where a factor is mapped to another aesthetic, like colour. The defaults are designed to make legends easier to read for line plots, as shown in the following example looking at marital status by age.

by_age <- gss_cat %>%
  filter(! %>%
  group_by(age, marital) %>%
  count() %>%
  mutate(prop = n / sum(n))

ggplot(by_age, aes(age, prop)) +
  geom_line(aes(colour = marital))
reorder2-1ggplot(by_age, aes(age, prop)) +
  geom_line(aes(colour = fct_reorder2(marital, age, prop))) +
  labs(colour = "marital")

Learning more

You can learn more about forcats in R for data science, and on the forcats website.

Please let me know if you have more factor problems that forcats doesn’t help with!

We’re proud to announce version 1.2.0 of the tibble package. Tibbles are a modern reimagining of the data frame, keeping what time has shown to be effective, and throwing out what is not. Grab the latest version with:


This is mostly a maintenance release, with the following major changes:

  • More options for adding individual rows and (new!) columns
  • Improved function names
  • Minor tweaks to the output

There are many other small improvements and bug fixes: please see the release notes for a complete list.

Thanks to Jenny Bryan for add_row() and add_column() improvements and ideas, to William Dunlap for pointing out a bug with tibble’s implementation of all.equal(), to Kevin Wright for pointing out a rare bug with glimpse(), and to all the other contributors. Use the issue tracker to submit bugs or suggest ideas, your contributions are always welcome.

Adding rows and columns

There are now more options for adding individual rows, and columns can be added in a similar way, illustrated with this small tibble:

df <- tibble(x = 1:3, y = 3:1)
#> # A tibble: 3 × 2
#>       x     y
#>   <int> <int>
#> 1     1     3
#> 2     2     2
#> 3     3     1

The add_row() function allows control over where the new rows are added. In the following example, the row (4, 0) is added before the second row:

df %>% 
  add_row(x = 4, y = 0, .before = 2)
#> # A tibble: 4 × 2
#>       x     y
#>   <dbl> <dbl>
#> 1     1     3
#> 2     4     0
#> 3     2     2
#> 4     3     1

Adding more than one row is now fully supported, although not recommended in general because it can be a bit hard to read.

df %>% 
  add_row(x = 4:5, y = 0:-1)
#> # A tibble: 5 × 2
#>       x     y
#>   <int> <int>
#> 1     1     3
#> 2     2     2
#> 3     3     1
#> 4     4     0
#> 5     5    -1

Columns can now be added in much the same way with the new add_column() function:

df %>% 
  add_column(z = -1:1, w = 0)
#> # A tibble: 3 × 4
#>       x     y     z     w
#>   <int> <int> <int> <dbl>
#> 1     1     3    -1     0
#> 2     2     2     0     0
#> 3     3     1     1     0

It also supports .before and .after arguments:

df %>% 
  add_column(z = -1:1, .after = 1)
#> # A tibble: 3 × 3
#>       x     z     y
#>   <int> <int> <int>
#> 1     1    -1     3
#> 2     2     0     2
#> 3     3     1     1

df %>%  
  add_column(w = 0:2, .before = "x")
#> # A tibble: 3 × 3
#>       w     x     y
#>   <int> <int> <int>
#> 1     0     1     3
#> 2     1     2     2
#> 3     2     3     1

The add_column() function will never alter your existing data: you can’t overwrite existing columns, and you can’t add new observations.

Function names

frame_data() is now tribble(), which stands for “transposed tibble”. The old name still works, but will be deprecated eventually.

  ~x, ~y,
   1, "a",
   2, "z"
#> # A tibble: 2 × 2
#>       x     y
#>   <dbl> <chr>
#> 1     1     a
#> 2     2     z

Output tweaks

We’ve tweaked the output again to use the multiply character × instead of x when printing dimensions (this still renders nicely on Windows.) We surround non-semantic column with backticks, and dttm is now used instead of time to distinguish POSIXt and hms (or difftime) values.

The example below shows the new rendering:

tibble(`date and time` = Sys.time(), time = hms::hms(minutes = 3))
#> # A tibble: 1 × 2
#>       `date and time`     time
#>                <dttm>   <time>
#> 1 2016-08-29 16:48:57 00:03:00

Expect the printed output to continue to evolve in next release. Stay tuned for a new function that reconstructs tribble() calls from existing data frames.

I’m pleased to announce version 1.1.0 of stringr. stringr makes string manipulation easier by using consistent function and argument names, and eliminating options that you don’t need 95% of the time. To get started with stringr, check out the strings chapter in R for data science. Install it with:


This release is mostly bug fixes, but there are a couple of new features you might care out.

  • There are three new datasets, fruitwords and sentences, to help you practice your regular expression skills:
    str_subset(fruit, "(..)\\1")
    #> [1] "banana"      "coconut"     "cucumber"    "jujube"      "papaya"     
    #> [6] "salal berry"
    #> [1] "a"        "able"     "about"    "absolute" "accept"   "account"
    #> [1] "The birch canoe slid on the smooth planks."
  • More functions work with boundary()str_detect() and str_subset() can detect boundaries, and str_extract() and str_extract_all() pull out the components between boundaries. This is particularly useful if you want to extract logical constructs like words or sentences.
    x <- "This is harder than you might expect, e.g. punctuation!"
    x %>% str_extract_all(boundary("word")) %>% .[[1]]
    #> [1] "This"        "is"          "harder"      "than"        "you"        
    #> [6] "might"       "expect"      "e.g"         "punctuation"
    x %>% str_extract(boundary("sentence"))
    #> [1] "This is harder than you might expect, e.g. punctuation!"
  • str_view() and str_view_all() create HTML widgets that display regular expression matches. This is particularly useful for teaching.

For a complete list of changes, please see the release notes.

Want to Master R?  There’s no better time or place if you’re within an easy train, plane, automobile ride or a short jog of Hadley Wickham’s workshop on September 12th and 13th at the AMA Conference Center in New York City.

Register here:

As of today, there are just 20+ seats left. Discounts are still available for academics (students or faculty) and for 5 or more attendees from any organization. Email if you have any questions about the workshop that you don’t find answered on the registration page.

Hadley has no Master R workshops planned for Boston, Washington DC, New York City or any location in the Northeast in the next year. If you’ve always wanted to take Master R but haven’t found the time, well, there’s truly no better time!

P.S. We’ve arranged a “happy hour” reception after class on Monday the 12th. Be sure to set aside an hour or so after the first day to talk to your classmates and Hadley about what’s happening in R.

I’m pleased to announce tidyr 0.6.0. tidyr makes it easy to “tidy” your data, storing it in a consistent form so that it’s easy to manipulate, visualise and model. Tidy data has a simple convention: put variables in the columns and observations in the rows. You can learn more about it in the tidy data vignette. Install it with:


I mostly released this version to bundle up a number of small tweaks needed for R for Data Science. But there’s one nice new feature, contributed by Jan Schulzdrop_na()drop_na()drops rows containing missing values:

df <- tibble(x = c(1, 2, NA), y = c("a", NA, "b"))
#> # A tibble: 3 × 2
#>       x     y
#>   <dbl> <chr>
#> 1     1     a
#> 2     2  <NA>
#> 3    NA     b

# Called without arguments, it drops rows containing
# missing values in any variable:
df %>% drop_na()
#> # A tibble: 1 × 2
#>       x     y
#>   <dbl> <chr>
#> 1     1     a

# Or you can restrict the variables it looks at, 
# using select() style syntax:
df %>% drop_na(x)
#> # A tibble: 2 × 2
#>       x     y
#>   <dbl> <chr>
#> 1     1     a
#> 2     2  <NA>

Please see the release notes for a complete list of changes.

The R package DT v0.2 is on CRAN now. You may install it from CRAN via install.packages('DT') or update your R packages if you have already installed it before. It has been over a year since the last CRAN release of DT, and there have been a lot of changes in both DT and the upstream DataTables library. You may read the release notes to know all changes, and we want to highlight two major changes here:

  • Two extensions “TableTools” and “ColVis” have been removed from DataTables, and a new extension named “Buttons” was added. See this page for examples.
  • For tables in the server-side processing mode (the default mode for tables in Shiny), the selected row indices are integers instead of characters (row names) now. This is for consistency with the client-side mode (which returns integer indices). In many cases, it does not make much difference if you index an R object with integers or names, and we hope this will not be a breaking change to your Shiny apps.

In terms of new features added in the new version of DT, the most notable ones are:

  • Besides row selections, you can also select columns or cells. Please note the implementation is not based on the “Select” extension of DataTables, so not all features of “Select” are available in DT. You can find examples of row/column/cell selections on this page.
  • There are a number of new functions to modify an existing table instance in a Shiny app without rebuilding the full table widget. One significant advantage of this feature is it will be much faster and more efficient to update certain aspects of a table, e.g., you can change the table caption, or set the global search keyword of a table without making DT to create the whole table from scratch. You can even replace the data object behind the table on the fly (using DT::replaceData()), and after the data is updated, the table state can be preserved (e.g., sorting and filtering can remain the same).
  • A few formatting functions such as formatSignif() and formatString() were also added to the package.

As always, you are welcome to test the new release and we will appreciate your feedback. Please file bug reports to Github, and you may ask questions on StackOverflow using the DT tag.

readr 1.0.0 is now available on CRAN. readr makes it easy to read many types of rectangular data, including csv, tsv and fixed width files. Compared to base equivalents like read.csv(), readr is much faster and gives more convenient output: it never converts strings to factors, can parse date/times, and it doesn’t munge the column names. Install the latest version with:


Releasing a version 1.0.0 was a deliberate choice to reflect the maturity and stability and readr, thanks largely to work by Jim Hester. readr is by no means perfect, but I don’t expect any major changes to the API in the future.

In this version we:

  • Use a better strategy for guessing column types.
  • Improved the default date and time parsers.
  • Provided a full set of lower-level file and line readers and writers.
  • Fixed many bugs.

Column guessing

The process by which readr guesses the types of columns has received a substantial overhaul to make it easier to fix problems when the initial guesses aren’t correct, and to make it easier to generate reproducible code. Now column specifications are printing by default when you read from a file:

mtcars2 <- read_csv(readr_example("mtcars.csv"))
#> Parsed with column specification:
#> cols(
#>   mpg = col_double(),
#>   cyl = col_integer(),
#>   disp = col_double(),
#>   hp = col_integer(),
#>   drat = col_double(),
#>   wt = col_double(),
#>   qsec = col_double(),
#>   vs = col_integer(),
#>   am = col_integer(),
#>   gear = col_integer(),
#>   carb = col_integer()
#> )

The thought is that once you’ve figured out the correct column types for a file, you should make the parsing strict. You can do this either by copying and pasting the printed column specification or by saving the spec to disk:

# Once you've figured out the correct types
mtcars_spec <- write_rds(spec(mtcars2), "mtcars2-spec.rds")

# Every subsequent load
mtcars2 <- read_csv(
  col_types = read_rds("mtcars2-spec.rds")
# In production, you might want to throw an error if there
# are any parsing problems.

You can now also adjust the number of rows that readr uses to guess the column types with guess_max:

challenge <- read_csv(readr_example("challenge.csv"))
#> Parsed with column specification:
#> cols(
#>   x = col_integer(),
#>   y = col_character()
#> )
#> Warning: 1000 parsing failures.
#>  row col               expected             actual
#> 1001   x no trailing characters .23837975086644292
#> 1002   x no trailing characters .41167997173033655
#> 1003   x no trailing characters .7460716762579978 
#> 1004   x no trailing characters .723450553836301  
#> 1005   x no trailing characters .614524137461558  
#> .... ... ...................... ..................
#> See problems(...) for more details.
challenge <- read_csv(readr_example("challenge.csv"), guess_max = 1500)
#> Parsed with column specification:
#> cols(
#>   x = col_double(),
#>   y = col_date(format = "")
#> )

(If you want to suppress the printed specification, just provide the dummy spec col_types = cols())

You can now access the guessing algorithm from R: guess_parser() will tell you which parser readr will select.

#> [1] "number"

# Were previously guessed as numbers
guess_parser(c(".", "-"))
#> [1] "character"
guess_parser(c("10W", "20N"))
#> [1] "character"

# Now uses the default time format
#> [1] "time"

Date-time parsing improvements:

The date time parsers recognise three new format strings:

  • %I for 12 hour time format:
    parse_time("1 pm", "%I %p")
    #> 13:00:00

    Note that parse_time() returns hms from the hms package, rather than a custom time class

  • %AD and %AT are “automatic” date and time parsers. They are both slightly less flexible than previous defaults. The automatic date parser requires a four digit year, and only accepts - and / as separators. The flexible time parser now requires colons between hours and minutes and optional seconds.
    parse_date("2010-01-01", "%AD")
    #> [1] "2010-01-01"
    parse_time("15:01", "%AT")
    #> 15:01:00

If the format argument is omitted in parse_date() or parse_time(), the default date and time formats specified in the locale will be used. These now default to %AD and %AT respectively. You may want to override in your standard locale() if the conventions are different where you live.

Low-level readers and writers

readr now contains a full set of efficient lower-level readers:

  • read_file() reads a file into a length-1 character vector; read_file_raw() reads a file into a single raw vector.
  • read_lines() reads a file into a character vector with one entry per line; read_lines_raw() reads into a list of raw vectors with one entry per line.

These are paired with write_lines() and write_file() to efficient write character and raw vectors back to disk.

Other changes

  • read_fwf() was overhauled to reliably read only a partial set of columns, to read files with ragged final columns (by setting the final position/width to NA), and to skip comments (with the comment argument).
  • readr contains an experimental API for reading a file in chunks, e.g. read_csv_chunked() and read_lines_chunked(). These allow you to work with files that are bigger than memory. We haven’t yet finalised the API so please use with care, and send us your feedback.
  • There are many otherbug fixes and other minor improvements. You can see a complete list in the release notes.

A big thanks goes to all the community members who contributed to this release: @antoine-lizee, @fpinter, @ghaarsma, @jennybc, @jeroenooms, @leeper, @LluisRamon, @noamross, and @tvedebrink.

New York City is a wonderful place to be most of the time but especially in September!

If you live or work in the city or just want a good business reason to visit, consider joining RStudio Chief Data Scientist Hadley Wickham in the heart of Manhattan on September 12th and 13th, just by Times Square at the AMA Conference Center. It’s a rare opportunity to learn from one of the R community’s most popular and innovative authors and package developers.

Hadley’s workshops usually sell out. This is his only East US public workshop in 2016 and there are no plans to do another in NYC in 2017. If you’re an active R user and have been meaning to take this class, now is the perfect time to do it!

Register here:

We look forward to seeing you in New York!